Professor Orlando directs the Electron- and Photon-Induced Chemistry on Surfaces Lab (EPICS). EPICS is primarily a surface chemistry and physics group that focuses on the use of high-powered pulsed lasers, low-energy electron scattering, micro-plasmas, mass spectrometry, and ultrahigh vacuum surface science techniques. The unifying theme within the group is to understand the important role electronic excitations of surfaces and interfaces play in chemical transformations, which can occur in radiation environments within the interstellar media, plasmas, or planetary magnetospheres. Understanding nonequilibrium processing of surfaces and materials within and beyond our solar system is a specific area of focus, particularly the role of electrons, protons, and extreme ultraviolet radiation in transforming surfaces of planets, their satellites (moons), asteroids, and comets. In addition, there are major efforts to examine the atomic and chemical composition of meteorite and lunar samples that may hold clues to the details of planet formation and possibly the chemical origin of life. These fundamental efforts are connected to many space missions including the Galileo, Cassini, MESSENGER, Deep Impact, and LADEE. Efforts are also underway that examine the chemical processes that occur in star-forming regions, within the solar nebulae, and on grains within interstellar regions. This research group is also affiliated with the Jet Propulsion Laboratory NAI on "Titan as a Pre-biotic Chemical System" and the John Hopkins University Applied Physics Laboratory Lunar Science and SERVI Institutes.