Motion is all around us. Motion is particularly interesting when it has many degrees of freedom. This talk covers the design, sensing, and planning for snake, multi-agent and modular robot high DOF systems. Thus far, each system requires different fundamentals – geometric mechanics for snake robot locomotion, deferred planning and ergodic search for multi-agent systems, and novel generator and discriminator networks for modular robots – which will be covered in this talk. While no grand unifying theory combines these approaches, they all share one aspect in common: reduce complex high dimensional problems into low dimensional ones. In pursuit of this investigation in reduction, my group has created several embedded systems - actuators and edge sensors - to build and deploy robots that stress-tests the core assumptions in the theory and demonstrates efficacy for applications of national importance. These applications include minimally invasive surgery, urban search and rescue, manufacturing, assembly in low-Earth orbit, maintenance of municipal infrastructure, and agile recycling. This talk will discuss these confined space applications, and if time permits, the five spin off companies, and one manufacturing institute, that my colleagues and I co-founded to commercialize the core technologies covered in this talk.
- Tags
-